AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估

简介: 本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。

通过正点原子的ATK-3568了解到了YOLOP,这里记录下训练及测试及在onnxruntime部署的过程。

步骤:训练->测试->转成onnx->onnxruntime部署测试

一、前言

YOLOP是华中科技大学研究团队在2021年开源的研究成果,其将目标检测/可行驶区域分割和车道线检测三大视觉任务同时放在一起处理,并且在Jetson TX2开发板子上能够达到23FPS。

论文标题:YOLOP: You Only Look Once for Panoptic Driving Perception
论文地址: https://arxiv.org/abs/2108.11250
官方代码: https://github.com/hustvl/YOLOP

网络结构
相比于其它论文,YOLOP的论文很容易阅读。YOLOP的核心亮点就是多任务学习,而各部分都是拿其它领域的成果进行缝合,其网络结构如下图所示:
image.png
三个子任务共用一个Backbone和Neck,然后分出来三个头来执行不同的任务。

二、环境搭建

1、平台

使用的是AutoDL平台,配置如下:
image.png

2、环境创建

创建虚拟环境

conda create -n yolop_env python=3.8 -y

激活环境

conda activate yolop_env

安装pytorch

根据官网Previous PyTorch Versions | PyTorch安装pytorch,这里选择1.7版本,其他版本测试时,在转换成onnx时出错,所以在这里直接安装1.7版本。

pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

下载源码,代码地址:

https://github.com/hustvl/YOLOP

安装yolop环境

pip install -r requirements.txt

测试

python tools/demo.py --source ./inference/images/0ace96c3-48481887.jpg

运行 python tools/demo.py --source ./inference/videos/1.mp4
测试图片:–source 图片路径 (或存放图片的文件夹路径)
测试视频:–source 视频路径 (或存放视频的文件夹路径)
相机实时:–source 0
默认用cpu测试效果,如果想改成gpu,修改demo.py 198行。

三、onnxruntime测试

先安装onnxruntime

pip install onnxruntime

测试

python test_onnx.py --weight yolop-640-640.onnx --img ./inference/images/adb4871d-4d063244.jpg

四、训练

训练前需要下载数据集,可以根据YOLOP里的readme.md里的地址下载,也可以下载下面的网盘地址,把数据解压到YOLOP目录下。

链接:https://pan.baidu.com/s/1DJirasFncnnf4auI-BxEHA 
提取码:1234

在Train之前修改相关参数,修改文件./lib/config/default.py

1、修改第9行:

_C.WORKERS = 0
2、修改第51-56行,这是数据集的路径

_C.DATASET = CN(new_allowed=True)
_C.DATASET.DATAROOT = '/root/YOLOP-main/datasets/images'       # the path of images folder
_C.DATASET.LABELROOT = '/root/YOLOP-main/datasets/det_annotations'      # the path of det_annotations folder
_C.DATASET.MASKROOT = '/root/YOLOP-main/datasets/da_seg_annotations'                # the path of da_seg_annotations folder
_C.DATASET.LANEROOT = '/root/YOLOP-main/datasets/ll_seg_annotations'               # the path of ll_seg_annotations folder

3、修改ATCH_SIZE
修改96行,121行_C.TRAIN.BATCH_SIZE_PER_GPU 为合适大小

修改完后,就可以训练了,执行下面命令开始训练:

python tools/train.py

训练时间很久,根据default.py文件,epoch共240轮,大概8小时左右,在训练过程中有一点要注意,每训练一轮结束后,模型和一些图片都会保存下来,造成磁盘空间不够,有可能训练失败,我只是测试所以只训练了100轮。

五、转onnx模型及测试

转换成onnx模型前,先安装环境

pip install onnxruntime
pip install onnx
pip install onnx-simplifier
pip install onnxoptimizer
pip install numpy==1.20.0

安装完后,运行python export_onnx.py转成onnx模型

onnxruntime测试和上面一样,执行下面命令测试

python test_onnx.py --weight yolop-640-640.onnx --img ./inference/images/adb4871d-4d063244.jpg

onnx转换并测试成功,接下来就是把模型转成rknn并在rk3568上部署。

遇到的问题:
[ONNXRuntimeError] : 1 : FAIL : Node (Mul_948) Op (Mul) [ShapeInferenceError]
处理:把torch降成1.7

相关文章
|
28天前
|
机器学习/深度学习 人工智能 算法
高考理科题AI秒解!昆仑万维开源多模态推理模型 Skywork-R1V 2.0
Skywork-R1V 2.0是昆仑万维最新开源的多模态推理模型,通过混合强化学习和多模态奖励模型实现复杂推理任务,在理科题目解答和科研分析中展现出色性能。
167 11
高考理科题AI秒解!昆仑万维开源多模态推理模型 Skywork-R1V 2.0
|
23天前
|
人工智能 自然语言处理 搜索推荐
AI 搜索开放平台重磅发布:Qwen3 模型上线啦
阿里云AI搜索开放平台重磅发布最新Qwen3模型,为企业和开发者提供全栈智能搜索解决方案。Qwen3作为最新一代大模型,在推理、多语言支持和Agent能力上表现卓越。用户可通过三步快速体验Qwen3服务,助力业务在AI时代抢占先机。
190 12
|
1天前
|
人工智能 负载均衡 API
长连接网关技术专题(十二):大模型时代多模型AI网关的架构设计与实现
随着 AI 技术快速发展,业务对 AI 能力的渴求日益增长。当 AI 服务面对处理大规模请求和高并发流量时,AI 网关从中扮演着至关重要的角色。AI 服务通常涉及大量的计算任务和设备资源占用,此时需要一个 AI 网关负责协调这些请求来确保系统的稳定性与高效性。因此,与传统微服务架构类似,我们将相关 API 管理的功能(如流量控制、用户鉴权、配额计费、负载均衡、API 路由等)集中放置在 AI 网关层,可以降低系统整体复杂度并提升可维护性。 本文要分享的是B站在大模型时代基于多模型AI的网关架构设计和实践总结,希望能带给你启发。
27 4
|
3天前
|
SQL 人工智能 自然语言处理
阿里云 AI 搜索开放平台新功能发布:新增GTE自部署模型
阿里云 AI搜索开放平台正式推出 GTE 多语言通用文本向量模型(iic/gte_sentence-embedding_multilingual-base)
|
23天前
|
人工智能 开发工具
阿里云AI Stack全量适配Qwen3模型,企业级部署效率全面升级
2025年4月29日的凌晨5点,阿里全新一代模型通义千问Qwen3正式发布并全部开源8款「混合推理模型」,包含: 6款Dense模型:0.6B、1.7B、4B、8B、14B、32B。 2款MoE模型:Qwen3-30B-A3B和旗舰版Qwen3-235B-A22B。 阿里云AI Stack已适配全量Qwen3模型,可快速部署实现Qwen3模型的开箱即用!
122 4
|
26天前
|
存储 人工智能 安全
阿里云双项入选首批智算一体化权威评估 以AI Stack加速政企智能化升级 ——万卡智算集群服务推进方阵(ICCPA)第三期沙龙在京举办
2024年4月9日,中国信通院主办的智算集群服务沙龙第三期在京召开。阿里云凭借领先的AI技术能力,成为首批通过《面向大模型的智算一体化解决方案》评估的云厂商,并入选行业应用案例。会上,阿里云AI Stack赋能政企大模型高效落地,提供软硬一体推理优化框架,支持主流开源模型快速适配,助力企业构建高性能私有化AI服务,已在政务、金融等领域广泛应用。
|
机器学习/深度学习 计算机视觉
AIGC核心技术——计算机视觉(CV)预训练大模型
【1月更文挑战第13天】AIGC核心技术——计算机视觉(CV)预训练大模型
806 3
AIGC核心技术——计算机视觉(CV)预训练大模型
|
机器学习/深度学习 PyTorch 算法框架/工具
Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测
Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测
205 0
|
2月前
|
存储 人工智能 自然语言处理
关于计算机视觉中的自回归模型,这篇综述一网打尽了
这篇综述文章全面介绍了自回归模型在计算机视觉领域的应用和发展。文章首先概述了视觉中的序列表示和建模基础知识,随后根据表示策略将视觉自回归模型分为基于像素、标记和尺度的三类框架,并探讨其与生成模型的关系。文章详细阐述了自回归模型在图像、视频、3D及多模态生成等多方面的应用,列举了约250篇参考文献,并讨论了其在新兴领域的潜力和面临的挑战。此外,文章还建立了一个GitHub存储库以整理相关论文,促进了学术合作与知识传播。论文链接:https://arxiv.org/abs/2411.05902
67 1
|
8月前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
OSZAR »