KAG:增强 LLM 的专业能力!蚂蚁集团推出专业领域知识增强框架,支持逻辑推理和多跳问答

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: KAG 是蚂蚁集团推出的专业领域知识服务框架,通过知识增强提升大型语言模型在特定领域的问答性能,支持逻辑推理和多跳事实问答,显著提升推理和问答的准确性和效率。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 知识增强:KAG 通过知识图谱和向量检索结合,提升大型语言模型在特定领域的问答能力。
  2. 混合推理:采用逻辑形式引导的混合推理引擎,支持复杂问题的符号化和结构化求解。
  3. 知识对齐:通过语义推理进行知识对齐,提升知识的标准化和连通性。

正文(附运行示例)

KAG 是什么

公众号: 蚝油菜花 - KAG

KAG(Knowledge Augmented Generation)是蚂蚁集团推出的专业领域知识服务框架,旨在通过知识增强提升大型语言模型(LLMs)在特定领域的问答性能。KAG 基于知识和文本块的互索引结构,整合非结构化数据、结构化信息以及业务专家经验,形成统一的业务知识图谱。

KAG 推出了逻辑形式引导的混合推理引擎,将自然语言问题转化为结合语言和符号的问题解决过程,支持逻辑推理和多跳事实问答等功能,有效克服传统 RAG 向量相似性计算的模糊性和 OpenIE 引入的噪声问题,显著提升推理和问答的准确性和效率。

KAG 的主要功能

  • 专业领域问答增强:结合知识图谱和向量检索,提升大型语言模型在特定领域的问答能力,生成更准确、专业和逻辑性强的答案。
  • 知识表示与检索优化:用LLM友好的知识表示框架,实现知识图谱与原始文本块的互索引,优化知识的表示、推理和检索过程,提高检索结果的准确性和相关性。
  • 混合推理与问题解决:基于逻辑形式引导的混合推理引擎,将自然语言问题转化为结合语言和符号的问题解决过程,实现检索、知识图谱推理、语言推理和数值计算的集成,有效处理复杂问题。
  • 知识对齐与语义增强:基于语义推理进行知识对齐,定义领域知识为各种语义关系,提高知识的标准化和连通性,增强知识表示的准确性和一致性。

KAG 的技术原理

  • 知识图谱与向量检索结合:基于知识图谱的结构化语义信息和向量检索的高效性,知识图谱组织和表示领域知识,借助向量检索快速获取与问题相关的知识片段。
  • LLM友好的知识表示:设计LLMFriSPG框架,将知识图谱的数据、信息和知识层次结构与大型语言模型的输入输出格式相适配,实现知识的统一表示和有效传递。
  • 互索引机制:建立知识图谱结构与原始文本块之间的互索引关系,让图结构中的实体、关系等与文本块中的内容相互关联,增强知识的语义连通性和检索的准确性。
  • 逻辑形式引导推理:采用逻辑形式语言将复杂问题分解为多个子问题,基于规划、推理和检索等操作符进行求解,实现问题解决过程的符号化和结构化,提高推理的严谨性和可解释性。
  • 语义推理与知识对齐:在知识图谱的构建和检索过程中,用语义推理技术对知识进行对齐和整合,识别和建立知识之间的语义关系,提升知识的准确性和一致性。

如何运行 KAG

1. 安装依赖

首先,确保你的系统满足以下要求:

  • 推荐系统版本:macOS Monterey 12.6 或更高版本,CentOS 7 / Ubuntu 20.04 或更高版本,Windows 10 LTSC 2021 或更高版本。
  • 软件要求:macOS / Linux 用户需要安装 Docker 和 Docker Compose,Windows 用户需要安装 WSL 2 / Hyper-V、Docker 和 Docker Compose。

2. 下载并启动服务

使用以下命令下载 docker-compose.yml 文件并启动服务:

# 设置 HOME 环境变量(仅 Windows 用户需要执行此命令)
# set HOME=%USERPROFILE%

curl -sSL https://raw.githubusercontent.com/OpenSPG/openspg/refs/heads/master/dev/release/docker-compose-west.yml -o docker-compose-west.yml
docker compose -f docker-compose-west.yml up -d

3. 使用 KAG 产品

在浏览器中访问 KAG 产品的默认 URL:http://127.0.0.1:8887

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
2月前
|
机器学习/深度学习 存储 缓存
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
大型语言模型(LLM)的推理效率是AI领域的重要挑战。本文聚焦KV缓存技术,通过存储复用注意力机制中的Key和Value张量,减少冗余计算,显著提升推理效率。文章从理论到实践,详细解析KV缓存原理、实现与性能优势,并提供PyTorch代码示例。实验表明,该技术在长序列生成中可将推理时间降低近60%,为大模型优化提供了有效方案。
216 15
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
|
2月前
|
人工智能 自然语言处理 测试技术
能够双向推理的LLM!Dream-7B:港大联合华为开源的扩散推理模型,能够同时考虑前后文信息
Dream-7B是由香港大学与华为诺亚方舟实验室联合研发的开源扩散大语言模型,采用独特的掩码扩散范式,在文本生成、数学推理和代码编写等任务中展现出卓越性能。
139 3
能够双向推理的LLM!Dream-7B:港大联合华为开源的扩散推理模型,能够同时考虑前后文信息
|
2月前
|
数据采集 算法 数据挖掘
CLIMB自举框架:基于语义聚类的迭代数据混合优化及其在LLM预训练中的应用
英伟达提出的CLIMB框架,是一种自动化优化大型语言模型(LLM)预训练数据混合的创新方法。通过语义嵌入与聚类技术,CLIMB能系统地发现、评估并优化数据混合策略,无需人工干预。该框架包含数据预处理、迭代自举及最优权重确定三大阶段,结合小型代理模型与性能预测器,高效搜索最佳数据比例。实验表明,基于CLIMB优化的数据混合训练的模型,在多项推理任务中显著超越现有方法,展现出卓越性能。此外,研究还构建了高质量的ClimbMix数据集,进一步验证了框架的有效性。
101 0
CLIMB自举框架:基于语义聚类的迭代数据混合优化及其在LLM预训练中的应用
|
3月前
|
人工智能 数据可视化 API
36.7K star!拖拽构建AI流程,这个开源LLM应用框架绝了!
`Flowise` 是一款革命性的低代码LLM应用构建工具,开发者通过可视化拖拽界面,就能快速搭建基于大语言模型的智能工作流。该项目在GitHub上线不到1年就斩获**36.7K星标**,被开发者誉为"AI时代的乐高积木"。
204 8
|
3月前
|
机器学习/深度学习 人工智能 缓存
英伟达提出全新Star Attention,10倍加速LLM推理!登顶Hugging Face论文榜
英伟达推出的Star Attention技术,旨在解决Transformer模型在长序列推理中的高计算成本与速度瓶颈问题。通过两阶段块稀疏近似方法,第一阶段利用块局部注意力并行处理上下文信息,第二阶段通过全局注意力机制交互查询与缓存令牌,从而显著提升计算效率并减少通信开销。该技术可无缝集成到现有LLM中,将内存需求和推理时间降低多达11倍,同时保持高准确性。然而,其在极长序列处理中可能面临内存限制,并增加模型复杂性。尽管如此,Star Attention为长序列推理提供了创新解决方案,推动了Transformer模型的实际应用潜力。
86 19
|
1月前
|
存储 JSON PyTorch
Multimodal LLM训练-模型文件\训练数据加载逻辑源码分析
Multimodal LLM训练-模型文件\训练数据加载逻辑源码分析
85 17
|
2月前
|
机器学习/深度学习 人工智能 算法
RAGEN:RL训练LLM推理新范式!开源强化学习框架让Agent学会多轮决策
RAGEN是一个基于StarPO框架的开源强化学习系统,通过马尔可夫决策过程形式化Agent与环境的交互,支持PPO、GRPO等多种优化算法,显著提升多轮推理训练的稳定性。
208 5
RAGEN:RL训练LLM推理新范式!开源强化学习框架让Agent学会多轮决策
|
3月前
|
机器学习/深度学习 人工智能 算法
SWEET-RL:基于训练时信息的多轮LLM代理强化学习框架
SWEET-RL是一种基于训练时信息的逐步评估算法,显著提升了多轮大型语言模型(LLM)代理在强化学习中的成功率。相比现有方法,SWEET-RL将成功率提高6%,使小型开源模型如Llama-3.1-8B达到甚至超越GPT-4O等大型专有模型性能。通过非对称Actor-Critic结构、创新优势函数参数化及两阶段训练流程,SWEET-RL优化了信用分配机制与泛化能力,降低了计算成本。ColBench基准测试显示,SWEET-RL在后端编程和前端设计任务中表现卓越,为AI代理训练技术带来突破性进展。
105 2
SWEET-RL:基于训练时信息的多轮LLM代理强化学习框架
|
4月前
|
机器学习/深度学习 存储 缓存
LLM高效推理:KV缓存与分页注意力机制深度解析
随着大型语言模型(LLM)规模和复杂性的增长,高效推理变得至关重要。KV缓存和分页注意力是优化LLM推理的两项关键技术。KV缓存通过存储键值对减少重复计算,而分页注意力则通过将序列分割成小块来降低内存消耗,从而有效处理长序列。本文深入剖析这些技术的工作原理及其在仅解码器模型中的应用,探讨其优势与挑战,并展示其实现示例。
189 16
LLM高效推理:KV缓存与分页注意力机制深度解析
|
4月前
|
存储 Kubernetes 测试技术
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
186 12

热门文章

最新文章

OSZAR »