Transformer总结笔记

简介: 1、PyTorch中的基础运算2、自注意力机制3、多头注意力机制4、带隐码的多头注意力机制5、交叉注意力机制

由于阿里云社区的编辑器编辑公式不方便,因此将notion页面直接贴过来了。笔记中有些字母符号的表示未统一,主要是精力有限,表达含义即可。若笔记中存在错误,欢迎指正。
Notion页面链接:https://savory-carol-bd2.notion.site/PyTorch-1f07919d671680bd88a7fd79fe988f1b

目录
相关文章
|
机器学习/深度学习 自然语言处理 算法
Transformer 模型:入门详解(1)
动动发财的小手,点个赞吧!
13617 1
Transformer 模型:入门详解(1)
|
机器学习/深度学习 编解码 并行计算
论文阅读笔记 | Transformer系列——CSWin Transformer
论文阅读笔记 | Transformer系列——CSWin Transformer
859 0
论文阅读笔记 | Transformer系列——CSWin Transformer
|
8月前
|
机器学习/深度学习 自然语言处理 并行计算
一文快速读懂Transformer
Transformer模型近年来成为自然语言处理(NLP)领域的焦点,其强大的特征提取能力和并行计算优势在众多任务中取得显著效果。本文详细解读Transformer的原理,包括自注意力机制和编码器-解码器结构,并提供基于PyTorch的代码演示,展示了其在文本分类等任务中的应用。
|
11月前
|
机器学习/深度学习 编解码 算法
【YOLOv8改进】Polarized Self-Attention: 极化自注意力 (论文笔记+引入代码)
该专栏专注于YOLO目标检测算法的创新改进和实战应用,包括卷积、主干网络、注意力机制和检测头的改进。作者提出了一种名为极化自注意(PSA)块,结合极化过滤和增强功能,提高像素级回归任务的性能,如关键点估计和分割。PSA通过保持高分辨率和利用通道及空间注意力,减少了信息损失并适应非线性输出分布。实验证明,PSA能提升标准基线和最新技术1-4个百分点。代码示例展示了如何在YOLOv8中实现PSA模块。更多详细信息和配置可在提供的链接中找到。
|
机器学习/深度学习 自然语言处理 并行计算
【Transformer系列(3)】 《Attention Is All You Need》论文超详细解读(翻译+精读)
【Transformer系列(3)】 《Attention Is All You Need》论文超详细解读(翻译+精读)
1863 0
【Transformer系列(3)】 《Attention Is All You Need》论文超详细解读(翻译+精读)
|
12月前
|
机器学习/深度学习 编解码 自然语言处理
【VIT】小白入门篇:从各个角度认识Vision Transformer
【VIT】小白入门篇:从各个角度认识Vision Transformer
670 0
【VIT】小白入门篇:从各个角度认识Vision Transformer
|
计算机视觉
论文阅读笔记 | Transformer系列——Transformer in Transformer
论文阅读笔记 | Transformer系列——Transformer in Transformer
362 0
论文阅读笔记 | Transformer系列——Transformer in Transformer
|
机器学习/深度学习 编解码 自然语言处理
论文阅读笔记 | Transformer系列——Swin Transformer
论文阅读笔记 | Transformer系列——Swin Transformer
1519 0
论文阅读笔记 | Transformer系列——Swin Transformer
|
机器学习/深度学习 人工智能 关系型数据库
简化版Transformer :Simplifying Transformer Block论文详解
在这篇文章中我将深入探讨来自苏黎世联邦理工学院计算机科学系的Bobby He和Thomas Hofmann在他们的论文“Simplifying Transformer Blocks”中介绍的Transformer技术的进化步骤。这是自Transformer 开始以来,我看到的最好的改进。
138 0
|
机器学习/深度学习 算法 大数据
Vision Transformer 必读系列之图像分类综述(三): MLP、ConvMixer 和架构分析(下)
在 Vision Transformer 大行其道碾压万物的同时,也有人在尝试非注意力的 Transformer 架构(如果没有注意力模块,那还能称为 Transformer 吗)。这是一个好的现象,总有人要去开拓新方向。相比 Attention-based 结构,MLP-based 顾名思义就是不需要注意力了,将 Transformer 内部的注意力计算模块简单替换为 MLP 全连接结构,也可以达到同样性能。典型代表是 MLP-Mixer 和后续的 ResMLP。
1245 0
Vision Transformer 必读系列之图像分类综述(三): MLP、ConvMixer 和架构分析(下)
OSZAR »